Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Protein Sci ; 33(4): e4950, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38511503

RESUMO

Protein nuclear magnetic resonance (NMR) spectroscopy relies on the ability to isotopically label polypeptides, which is achieved through heterologous expression in various host organisms. Most commonly, Escherichia coli is employed by leveraging isotopically substituted ammonium and glucose to uniformly label proteins with 15N and 13C, respectively. Moreover, E. coli can grow and express proteins in uniformly deuterium-substituted water (D2O), a strategy useful for experiments targeting high molecular weight proteins. Unfortunately, many proteins, particularly those requiring specific posttranslational modifications like disulfide bonding or glycosylation for proper folding and/or function, cannot be readily expressed in their functional forms using E. coli-based expression systems. One such class of proteins includes T-cell receptors and their related preT-cell receptors. In this study, we present an expression system for isotopic labeling of proteins using a nonadherent human embryonic kidney cell line, Expi293F, and a specially designed media. We demonstrate the application of this platform to the ß subunit common to both receptors. In addition, we show that this expression system and media can be used to specifically label amino acids Phe, Ile, Val, and Leu in this system, utilizing an amino acid-specific labeling protocol that allows targeted incorporation at high efficiency without significant isotopic scrambling. We demonstrate that this system can also be used to express proteins with fluorinated amino acids. We were routinely able to obtain an NMR sample with a concentration of 200 µM from 30 mL of culture media, utilizing less than 20 mg of the labeled amino acids.


Assuntos
Aminoácidos , Escherichia coli , Animais , Humanos , Escherichia coli/genética , Escherichia coli/metabolismo , Espectroscopia de Ressonância Magnética , Aminoácidos/química , Ressonância Magnética Nuclear Biomolecular/métodos , Receptores de Antígenos de Linfócitos T/metabolismo , Mamíferos
2.
Nat Commun ; 13(1): 1513, 2022 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-35314691

RESUMO

Limited methods are available for investigating the reorientational dynamics of A-site cations in two-dimensional organic-inorganic hybrid perovskites (2D OIHPs), which play a pivotal role in determining their physical properties. Here, we describe an approach to study the dynamics of A-site cations using solid-state NMR and stable isotope labelling. 2H NMR of 2D OIHPs incorporating methyl-d3-ammonium cations (d3-MA) reveals the existence of multiple modes of reorientational motions of MA. Rotational-echo double resonance (REDOR) NMR of 2D OIHPs incorporating 15N- and ¹³C-labeled methylammonium cations (13C,15N-MA) reflects the averaged dipolar coupling between the C and N nuclei undergoing different modes of motions. Our study reveals the interplay between the A-site cation dynamics and the structural rigidity of the organic spacers, so providing a molecular-level insight into the design of 2D OIHPs.

4.
Sci Rep ; 11(1): 19752, 2021 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-34611227

RESUMO

Although metabolic syndrome (MetS) is linked to an elevated risk of cardiovascular disease (CVD), the cardiac-specific risk mechanism is unknown. Obesity, hypertension, and diabetes (all MetS components) are the most common form of CVD and represent risk factors for worse COVID-19 outcomes compared to their non MetS peers. Here, we use obese Yorkshire pigs as a highly relevant animal model of human MetS, where pigs develop the hallmarks of human MetS and reproducibly mimics the myocardial pathophysiology in patients. Myocardium-specific mass spectroscopy-derived metabolomics, proteomics, and transcriptomics enabled the identity and quality of proteins and metabolites to be investigated in the myocardium to greater depth. Myocardium-specific deregulation of pro-inflammatory markers, propensity for arterial thrombosis, and platelet aggregation was revealed by computational analysis of differentially enriched pathways between MetS and control animals. While key components of the complement pathway and the immune response to viruses are under expressed, key N6-methyladenosin RNA methylation enzymes are largely overexpressed in MetS. Blood tests do not capture the entirety of metabolic changes that the myocardium undergoes, making this analysis of greater value than blood component analysis alone. Our findings create data associations to further characterize the MetS myocardium and disease vulnerability, emphasize the need for a multimodal therapeutic approach, and suggests a mechanism for observed worse outcomes in MetS patients with COVID-19 comorbidity.


Assuntos
COVID-19/patologia , Suscetibilidade a Doenças , Síndrome Metabólica/patologia , Animais , Fatores de Coagulação Sanguínea/genética , Fatores de Coagulação Sanguínea/metabolismo , COVID-19/complicações , COVID-19/virologia , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/metabolismo , Dieta Hiperlipídica/veterinária , Modelos Animais de Doenças , Humanos , Imunidade Inata/genética , Síndrome Metabólica/complicações , Síndrome Metabólica/metabolismo , Metiltransferases/genética , Metiltransferases/metabolismo , Miocárdio/metabolismo , Estresse Oxidativo/genética , Agregação Plaquetária , Receptores Purinérgicos P2Y1/genética , Receptores Purinérgicos P2Y1/metabolismo , Sistema Renina-Angiotensina , Fatores de Risco , SARS-CoV-2/isolamento & purificação , Suínos , Ativador de Plasminogênio Tipo Uroquinase/genética , Ativador de Plasminogênio Tipo Uroquinase/metabolismo
5.
Nat Methods ; 16(4): 333-340, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30858598

RESUMO

Atomic-level information about the structure and dynamics of biomolecules is critical for an understanding of their function. Nuclear magnetic resonance (NMR) spectroscopy provides unique insights into the dynamic nature of biomolecules and their interactions, capturing transient conformers and their features. However, relaxation-induced line broadening and signal overlap make it challenging to apply NMR spectroscopy to large biological systems. Here we took advantage of the high sensitivity and broad chemical shift range of 19F nuclei and leveraged the remarkable relaxation properties of the aromatic 19F-13C spin pair to disperse 19F resonances in a two-dimensional transverse relaxation-optimized spectroscopy spectrum. We demonstrate the application of 19F-13C transverse relaxation-optimized spectroscopy to investigate proteins and nucleic acids. This experiment expands the scope of 19F NMR in the study of the structure, dynamics, and function of large and complex biological systems and provides a powerful background-free NMR probe.


Assuntos
Isótopos de Carbono/química , Ressonância Magnética Nuclear Biomolecular/instrumentação , Ressonância Magnética Nuclear Biomolecular/métodos , Ácidos Nucleicos/química , Proteínas/química , DNA/química , Escherichia coli/metabolismo , Flúor/química , Fluoruracila/química , Campos Magnéticos , Peso Molecular , Mutagênese Sítio-Dirigida , Complexo de Endopeptidases do Proteassoma/química , Thermoplasma/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...